Case Studies of Intelligent Compaction

Ervin Dukatz, PH.D, P.E. Mathy Construction Co.

17th Annual TERRA Conference University of Minnesota, St. Paul campus February 14, 2013

Intelligent Compactors

- Why intelligent compactors (IC)?
- Are they "plug and play"?
- What accessories are needed?
- Where can they be used on a project?
- Data: What, Where, When and How?
- Where have they been used?
- And...?

Why intelligent compactors (IC)?

The Problem:

Are the pavement layers well compacted:

- Subgrade,
- Base, and
- HMA?

How do you measure?

Current Methods

- Post Construction
- Measured at

Random Locations

What is Needed?

- Real-time
 - -Control
 - Measurements

Why Intelligent Compactors?

(Courtesy of Dr. David White)

Sampling Coverage

1 / 1,000,000

100 % Coverage

Are they "plug and play"?

Some assembly needed:

- Accessories
- Calibrations
- Training
 - Operators
 - Managers
 - Owner/Agency

What accessories are needed?

Global Positioning System GPS

BOMAG

Onboard Report System

Continuous

Measurement

System

Temperature Sensors

Where to use IC rollers?

- Preconstruction site survey
- Mapping the project
- QC during construction
- Acceptance / Proof Rolling

Data: What, Where, When and

How?
Real time display shows the mapped:

- Roller pass locations
- Number of passes
- Stiffness value (RM)
- Option:
 - Temperature(s)

RMV(Roller Measurement

Bomag

Caterpillar CMV, MDP

Dynapac CMV

HAMM/Wirtgen

Sakai CCV

Notes on RMV

- RMV only measured with rollers with a vibrating drum.
- RMV only measured with vibrators turned on.
- Currently, RMV is unique to:
 - Manufacturer
 - Roller model
- RMV = E*, G* or M_R
- RMV standard(s) needed.

IC, Where are you?

- Local positioning
- VRS virtual reference system
 - Need 100% cellular coverage
 - Problems?
- RTK(real-time kinetic)-GPS
 - Need master/local base station
 - Repeaters and Rover
 - 100% coverage
 - Problems?

Location of Base Station

- Undisturbed by everyday activities.
- GPS needs coordinate system set
- Line of sight needed between IC(s), base station and repeaters
- Additionally: spare Batteries

(GPS) Rover

- GPS Instrument used to:
 - ü set up base station
 - ü Tie into local or state coordinate system
 - ü Mark test locations
 - ü Check calibrations.
 - GPS Receiver
 - Controller

How is the Data collected?

A short history.

- 2004 MnDOT first uses IC at MnRoad
- 2006 Mathy first trial with IC
- 2010 Mathy TPF 954 with WisDOT on I39
- 2010 Mathy SFDR Mn-16
- 2012 Mathy with MnDOT
 - Th 56 and 57
 - CSAH 16

BOMAG 190AD IC Roller-

E_{VIB}

- Found utilities and soft spots random testing by density gauge missed.
- Monitor display

BOMAG 190AD IC Roller

2007 194 Wisconsin

- PCC slabs rocking
- E_{VIB} prevented
- Operator

Sakai SW 880 IC Roller-

CCV 2008 I35 Iowa

- used in TPF954
- CCV ≠ E_{VIB}

2010 Project Overview- 139

WisDOT Proj. No. 1166-00-76

Net Centerline Length: 5.7 mi

Start: Maple Ridge Road

Finish: Sth 34 (Balsam Rd)

Project description:

Mill and remove existing HMA

Rubbilize or crack-and-seat
 PCC

Overlay with HMA

IC used for mapping and compaction

Manual Data Collection

Unique Features

- First TPF 954 IC demo to pave HMA on rubbilized and crack-and seat PCC base.
- First IC Demo to use IC rollers from "the ground up:
 - Mapping the rubbilized PCC base
 - Mapping the crack-and-seat PCC base
 - Compaction of HMA base, intermediate and surface layers.

Equipment

SW 880 Tandem IC Roller Trimble Navigation Limited base station SW 990 Tandem IC Roller
Topcon Positioning Systems
Base station

Mapping Main Lanes Section 1-1

Rubblized PCC

HMA Surface Course

Mean CCV = 12.5

 \rightarrow

Mean: CCV = 15.3

%Gmm = 93.5

IRI = 29.8 in/mile

Compaction Control Value Increases from ground up

2012 Project Overview-TH 56

- MnDOT Proj. No. 2507-21 & 2006-27
- Net Centerline Length: 9.14
 Miles
- Start: Kenyon, MN
- Finish: West Concord, MN
- Mill surface, SFDR, HMA
- IC equipment used through all phases.

2012 Project Overview-TH 57

- MnDOT Proj. No. 2509-22
- Net Centerline Length: 3.99
 Miles
- Start: Hader, MN
- Finish: Wanamingo, MN
- Bituminous Mill & Overlay
- IC equipment used through paving.

2012 Project Overview-CSAH 13

- Proj. No. 020-613-015 & 020-070-005
- Net Centerline Length: 9.324
 Miles
- Start: Kasson, MN
- Finish: TH 30
- FDR, HMA Surfacing, Aggregate Shouldering
- IC equipment used through all phases.

Roller Equipment

- Used or New roller?
 - Lead time
- What IC equipment is on the roller?
 - GPS Receiver
 - Sensors (stiffness vibratory rollers only)
 - Radio
 - Monitor

Trimble IC Retrofit System

(CCS900 Components)

MS972 GPS Receiver with WAAS (SBAS)

Instrumented Entire Rolling

Stabilization

Before Paving

FWD

Digital Test Rolling

·IC

- Nuke
- · LWD
- · FWD
- · PAVE-IR

HMA Wearing Course

- · IC
- Nulsé
- · LWD
- · FWD
- PAVE-IR
- · GPR

Nuke · LWD Pre-Grind · FWD

·IC

- · IC
- · Nuke
- · DCP
- · LWD
- FWD

Daily Setup

- IC manager (Calibrate Rollers)
 - ±6in. Tolerance
 Between roller and
 Rover
 - Time

Calibration – oops!

Accuracy		
Δ Northing	Δ Easting	Pass / Fail (P = Pass, F = Fail)
abs [(A) - (C)]	abs [(B) - (D)]	P ≤ 0.5 ft
0.10	0.21	Ø P□ F
0.03	0.21	Ø p□ F
0.70	0.57	□ P∑ F
0.53	0.60	□ p 🖾 F
0,84	0.75	□ P ∑ F
0.26	1.20	□ P 💢 F

Plan for the unexpected.

Communication

Manual Data
 Collection – 40% loss

 Automatic Data Collection <1%

Troubleshooting

- Radio issues
 - Delayed response
- Sensor issues
 - Replacement of parts
- Breakdowns
- Communication issues
 - Monitor working
 - Data not Transmitted
 - Have backup Plan.

View from the office

View from the office

Data Transfer – Th 56

- Directly from roller to web-base storage (cloud technology).
- At least one time per day.

Massive Volume Data!

9.14 Miles

8 Rollers

19,875 Export Files ~30,000,000 Rows of Data

Correlation between FWD & IC

Target Values

Unable to implement a target stiffness or pass count as part of QA.

COMPLEX

(It has never been successfully achieved in MN)

OC only at this time tesy of Rebecca Embacher, MnDOT

Smoothness Results

IRI Ride results – inches/mile

```
-Th56 Dodge 30.9
```

-Th56 Goodhue 31.8

-Th57 Goodhue 37.0

-CAH 13 30.0

Density Results

Density Averages - %G_{mm}

-Th56 94.6

-Th57 94.3

-CSAH 13 95.3

Summary

Quality Management

- Complete rolling documentation
- Stiffness
 - Varies with machine/manufacturer
 - Not correlated to current density specifications
 - No direct correlation to pavement performance models.
 - Huge data files

Summary

Intelligent Compaction can be used for:

- Pre-paving site surveys.
- Project mapping and
- Quality Control
- Real time measure of consistency.

Conclusion

- Standard rolling and paving practices need to be followed
 - Ø IC doesn't drive the equipment for you!
- IC is a developing technology for performance based acceptance.

Future Work

- Develop standards for stiffness measurements
- Correlate stiffness to pavement performance
- Integrate with 3D project control

Acknowledgements

- FHWA Lee Gallivan
- Transtec George Chang
- WisDOT Bob Arndofer, RobinStafford
- MnDOT Rebecca Embacher
- Mathy Construction and
 - American Asphalt Division
 - Rochester Sand and Gravel Division

